Diffraction imaging of single particles and biomolecules.

نویسندگان

  • G Huldt
  • A Szoke
  • J Hajdu
چکیده

Theory predicts that with a very short and very intense X-ray pulse, the image of a single diffraction pattern may be recorded from a large macromolecule, a virus, or a nanocluster of proteins without the need for a crystal. A three-dimensional data set can be assembled from such images when many copies of the molecule are exposed to the beam one by one in random orientations. We outline a method for structure reconstruction from such a data set in which no independent information is available about the orientation of the images. The basic requirement for reconstruction and/or signal averaging is the ability to tell whether two noisy diffraction patterns represent the same view of the sample or two different views. With this knowledge, averaging techniques can be used to enhance the signal and extend the resolution in a redundant data set. Based on statistical properties of the diffraction pattern, we present an analytical solution to the classification problem. The solution connects the number of incident X-ray photons with the particle size and the achievable resolution. The results are surprising in that they show that classification can be done with less than one photon per pixel in the limiting resolution shell, assuming Poisson-type photon noise in the image. The results can also be used to provide criteria for improvements in other image classification procedures, e.g., those used in electron tomography or diffraction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns.

We reconstructed the 3D Fourier intensity distribution of monodisperse prolate nanoparticles using single-shot 2D coherent diffraction patterns collected at DESY's FLASH facility when a bright, coherent, ultrafast x-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the expansion-maximization-compress...

متن کامل

Merging single-shot XFEL diffraction data from inorganic nanoparticles: a new approach to size and orientation determination

X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques...

متن کامل

Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function.

Optical imaging of single biomolecules and complexes in living cells provides a useful window into cellular processes. However, the three-dimensional dynamics of most important biomolecules in living cells remains essentially uncharacterized. The precise subcellular localization of mRNA-protein complexes plays a critical role in the spatial and temporal control of gene expression, and a full un...

متن کامل

A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser

The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single pa...

متن کامل

A minimal view of single-particle imaging with X-ray lasers.

The ability to serially interrogate single biomolecules with femtosecond X-ray pulses from free-electron lasers has ushered in the possibility of determining the three-dimensional structure of biomolecules without crystallization. However, the complexity of imaging a sample's structure from very many of its noisy and incomplete diffraction data can be daunting. In this review, we introduce a si...

متن کامل

Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction.

We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 A. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of structural biology

دوره 144 1-2  شماره 

صفحات  -

تاریخ انتشار 2003